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Results are presented from an experimental study into the fine-scale structure of
generic, Sc ~ 1, dynamically passive, conserved scalar fields in turbulent shear flows.
The investigation was based on highly resolved, two-dimensional imaging of laser
Rayleigh scattering, with measurements obtained in the self-similar far field of an
axisymmetric coflowing turbulent jet of propane issuing into air at local outer-scale
Reynolds numbers Re; = ud/v of 11000 and 14000. The resolution and signal quality
of these measurements allowed direct differentiation of the scalar field data {(x, ?) to
determine the instantaneous scalar energy dissipation rate field (Re S¢)™'V{-V{(x, 1).
Results show that, as for large-Sc scalars (Buch & Dahm 1996), the scalar dissipation
rate field consists entirely of strained, laminar, sheet-like diffusion layers, despite the
fact that at Sc ~ 1 the scale on which these layers are folded by vorticity gradients is
comparable to the layer thickness. Good agreement is found between the measured
internal structure of these layers and the self-similar local solution of the scalar
transport equation for a spatially uniform but time-varying strain field. The self-similar
distribution of dissipation layer thicknesses shows that the ratio of maximum to
minimum thicknesses is only 3 at these conditions. The local dissipation layer thickness
is related to the local outer scale as A,,/d = ARe;/* Sc™'?, with the average thickness
found to be {A) = 11.2, with both the largest and smallest layer thicknesses following
Kolmogorov (Re;**) scaling.

1. Introduction

Turbulent mixing between gaseous streams is one of the largest and most important
technological applications of turbulent flows, especially in problems involving
combustion of non-premixed or partially premixed reactant streams. The high rates of
molecular mixing achievable in turbulent flows permits high combustion heat release
rates to be achieved, with applications ranging from the development of advanced
aeropropulsion systems to the improvement of industrial combustion processes. In
many cases, a key interest is the reduction of potentially harmful trace chemical species
emissions that result from the complex mixing and reaction processes in the underlying
turbulent flow.

In the absence of significant differential diffusion effects, the conservation of atomic
elements and enthalpy in such chemically reacting flows permits the evolution of a
potentially very large set of chemically reacting species to be reduced to the mixing of
conserved scalar mixture fraction fields ¢{(x, ¢). Since such processes typically involve
gaseous species, the resulting conserved scalar quantities have mass diffusivities D
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comparable to the momentum diffusivity » in the underlying flow, and thus their
Schmidt number Sc =v/D is typically unity. In many cases involving chemical
reactions, it is physical processes occurring at the diffusive scales that can have a crucial
effect on the outcome of the reactions, and thus an understanding of the fine-scale
structure of Sc¢ ~ 1 conserved scalar mixing in turbulent shear flows is essential for
modelling the coupling between molecular mixing and chemical reactions in turbulent
combustion problems. It is well established that the fine-scale structure of the
conserved scalar mixing process is intimately connected with the detailed non-
equilibrium chemical kinetics responsible for the formation of trace pollutant emissions
such as nitrogen oxides and volatile organic compounds. Virtually all modern theories
of non-equilibrium mixing-chemistry coupling in turbulent flows are based on
assumptions about the fine-scale structure of Sc¢ ~ 1 conserved scalar fields.

The present study thus aims to identify the physical characteristics of the fine
structure of Sc & 1 scalar fields. In a previous companion paper (Dahm & Buch 1996,
hereinafter referred to as Part 1) we examined the fine-scale structure associated with
the mixing of Sc¢c 1 conserved scalar fields in turbulent shear flows. In a future
companion paper (Part 3) we shall examine the implications of this fine-scale structure
for non-equilibrium mixing-chemistry coupling in turbulent reacting flows.

1.1. Background

The basic concepts essential to the formulation adopted here for assessing the fine-scale
structure of conserved scalar mixing in turbulent flows can be found in §2 of Part 1.
A major result of Part 1 was the observation that, for S¢ 1 scalars in turbulent flows,
essentially all the scalar energy dissipation rate field y(x, 1) = (Re Sc¢) 'V{-V{(x, 1) is
concentrated entirely in thin, laminar diffusion layers. These layers result from the local
competing effects of the principal compressive strain rate induced by the underlying
flow, which acts to reduce the gradient lengthscale, and molecular diffusion of the
scalar which acts to broaden the gradient scale. As was detailed in §7 of Part 1, the
structure of this local strain field can be reduced to a single parameter o(f). The scalar
transport equation precludes line-like (o < 0) fine-scale structures in the scalar field but
permits sheet-like (o > 0) structures between local scalar endpoint values {* and ¢~ (see
figure 25 of Part 1). In contrast, the stretching term in the vorticity transport equation
allows both line-like and sheet-like structures to be indefinitely sustained. The vorticity
field thus shows the complexity of line-like, sheet-like, and more intricate intermediate
fine-structure topologies from which turbulence gains its notoriety, while the inner
scale structure of S¢ 1 conserved scalar fields is restricted to the single, comparatively
simple, locally sheet-like topology, and might thus be more amenable to modelling.
Fully resolved two- and three-dimensional experimental data for Sc¢ 1 scalar fields in
Part 1 showed good agreement with this locally sheet-like fine-scale structure (e.g.
figures 7-13 of Part 1), and good agreement with the local canonical solution for the
internal structure of this sheet-like topology (e.g. figures 28-31 of Part 1).

The arguments for a locally time-varying but spatially uniform strain field that leads
to formation and maintenance of this purely sheet-like fine structure in the scalar field
are well justified for Sc¢ 1 scalars by the resulting disparity in gradient lengthscales
in the vorticity and scalar fields. The competing effects of the most compressive local
principal strain rate ¢(f) and molecular diffusion with mass diffusivity D (see (7.6) of
Part 1) establish an equilibrium strain-limited scalar diffusion thickness A;, ~ (D/e)"/,
closely related to the Batchelor scale. A similar competition between the effects of
strain and diffusion of vorticity establishes a local strain-limited vorticity thickness
A, ~ (v/e)'/?, closely related to the Kolmogorov scale and giving the smallest scale on
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which velocity gradients can be sustained. The ratio of the scalar and vorticity
diffusivities establishes the ratio between these two scales as A,/A, ~ Sc™ /%, where
Sc = (v/D). Thus when Sc 1, the resulting A, A, and the notion of a spatially
uniform strain field over lengthscales significantly larger than A, is easily satisfied.

Such a comparison of the local gradient scales A, and A, offers a useful perspective
for understanding potential differences between the fine structure of S¢ 1 and Sc ~ 1
conserved scalar fields in turbulent flows. In particular, while for S¢ 1 there is a wide
disparity in the gradient lengthscales, with A;, A, as noted above, for Sc = 1 these two
lengthscales are essentially the same. This has two important consequences for the fine
structure of Sc ~ 1 scalar fields. First, in a Lagrangian frame moving with any point
in the flow, the validity of a linear representation of the local flow field over regions of
the order of A, is clearly justified for S¢ 1, but would at best be marginally valid for
Sc ~ 1. To the extent that this linearized picture of the local flow field plays a key role
in establishing the diffusion layer structure seen for S¢c 1 in Part 1, it is questionable
if such a comparatively simple fine-scale structure can be expected at S¢ ~ 1. Secondly,
even if the marginal validity of this linear representation of the flow did allow such
strained diffusion layers of thickness A;, to form, it is insightful to view the effect of Sc
on the subsequent evolution of such layers in terms of the relative scales of stretching
(due to the strain field) and folding (due to the vorticity field) of the layer. For S¢ 1
the smallest scale A, on which folding of the layer can occur is still of order Sc*/* larger
than the layer thickness A,. As a result, within a region extending a few A, in any
direction, the diffusion layer would undergo stretching but virtually no folding, since
the scale A, of the local vorticity gradient requires regions of this size to be in essentially
solid body rotation. For Sc &~ 1, on the other hand, the local scale A, of the strain rate
and vorticity gradients is essentially the same as the layer thickness A,, and thus within
such a region the layer would undergo not only stretching, but also folding back onto
itself. This suggests that the fine-structure topology might not remain layer-like, and
instead might take an entirely different form.

1.2. The present study

Here we report results from an experimental investigation of the fine-scale structure
associated with molecular mixing of S¢ ~ 1 conserved scalar fields in turbulent shear
flows. As was the case in Part 1, we will be concerned solely with the mixing of
dynamically passive scalars, for which the underlying velocity field u(x, ) is not
directly affected by the conserved scalar field {(x, ). Moreover, as was also the case in
Part 1, we will restrict our present attention to the mixing process in incompressible
turbulent shear flows, though we believe that many of these results carry over to
compressible turbulent flows as well. Finally, we will address only the molecular
diffusion due to gradients in the scalar concentration field, and will not address
additional diffusion due to thermophoretic or other effects which may be relevant in
some problems.

In view of the arguments above regarding potential differences between Sc¢ 1 and
Sc ~ 1 mixing, our principal objective is to answer two questions. First, is there any
coherent underlying fine structure associated with Sc ~ 1 mixing of conserved scalars
at the small scales of turbulent flows? In particular, does the sheet-like fine structure
seen for S¢c 1 in Part 1 extend to Sc ~ 1 scalar fields, despite the arguments above
regarding the different lengthscales involved in the underlying stretching and folding
process? Secondly, if a coherent fine-scale structure is present even at Sc &~ 1, what are
its characteristics and in what ways does it differ from the thin, strained, locally one-
dimensional laminar diffusion layers seen in Part 1 for S¢  1?
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The present study is based on highly resolved two-dimensional imaging of laser
Rayleigh scattering from the generic Sc &~ 1 conserved scalar field that results from
mixing between gaseous propane and air in a turbulent shear flow. As was the case in
Part 1, the measurements are obtained in the self-similar far field of an axisymmetric
coflowing turbulent jet. However, in Part 1 the scalar field measurements extended over
spatial regions that were of the order of the local inner scale A, and much smaller than
the local outer scale §, and consequently the arguments presented there for quasi-
universality of the fine structure on the scale A, were readily satisfied. Furthermore, the
notion of isotropy on these scales was readily justifiable, so that statistics obtained
from two-dimensional measurements could be converted to the corresponding three-
dimensional gradient statistics. In the present study the measurements extend over
spatial regions that are of the order of the outer scale § and many times larger than the
inner scale A, so that both these arguments are more difficult to justify. Regarding the
former, this merely means that the fine-scale structure seen over lengthscales of the
order of A, should still be universal, but the small-scale structure (i.e. the patterns into
which this fine-scale structure is arranged by the continual stretching and folding of the
underlying flow field on lengthscales between the inner scale A, and the outer scale d)
will depend at least to some extent on the local outer-scale Reynolds number Re; and
on the particular shear flow at hand. For the latter, the departures from isotropy will
be seen to be small enough for such corrections to still be reasonable. Consequently,
the fine-scale structure and its associated statistics obtained from these measurements
are believed to be largely representative of the quasi-universal structure that results
from the mixing of Sc¢ ~ 1 conserved scalars in all turbulent shear flows.

The presentation is organized as follows. In §2, we give a brief overview of the planar
laser Rayleigh imaging technique used to obtain very highly resolved measurements of
the S¢ ~ 1 conserved scalar field in a turbulent shear flow. Sample results of the local
conserved scalar and scalar dissipation fields are presented in §3, where we identify the
underlying structural elements of the scalar mixing process. Section 4 presents various
statistics associated with this fine structure, §5 examines the internal structure of the
scalar dissipation field and makes comparisons with the analytical solutions of Part 1,
and in §6 the distribution of dissipation layer thickness is determined. Section 7
considers the scaling of the dissipation layer thicknesses, and in §8 we summarize
conclusions from this study and discuss their implications for mixing and chemical
reactions in turbulent flows.

2. Experimental technique and resolution

These experiments were based on high-resolution two-dimensional imaging of laser
Rayleigh scattering in the self-similar far field of an axisymmetric coflowing turbulent
jet in air. The measurements were conducted in the Turbulent Diffusion Flame (TDF)
tunnel at the Combustion Research Facility (CRF) of Sandia National Laboratories.
The jet was established in the 30 cm x 30 cm x 200 cm test section of a forced-draft
vertical wind tunnel with a free-stream velocity U, by issuing a jet of undiluted
technical grade propane with momentum flux J, through a 7.7 mm diameter straight
cylindrical tube, which originated in the settling section of the tunnel and entered the
test section through a 9:1 area contraction. Both the free-stream velocity in the tunnel
and the jet momentum flux were determined from mass flow meter measurements. The
beam from a 300 mJ/pulse Nd:YAG laser was frequency doubled to 532 nm and
optically arranged to form a thin, fixed vertical light sheet passing radially through the
flow and containing the jet centreline. Propane was selected for the jet fluid since it has
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FIGURE 1. Schematic showing relative size and location of the imaging area for each case.
Letters identify case designations in tables 1 and 2.

Designation  J, (N) U, (ms™) x(m) x/9, Re,=ud/v

A0689 0.041 15.0 0.5 75 11000
C0689 0.041 15.0 0.5 75 11000
D0689 0.041 15.0 0.3 45 14000
E0689 0.041 15.0 0.3 45 14000
H0689 0.041 15.0 0.5 75 11000

TaBLE 1. Experimental conditions.

a Rayleigh scattering cross-section approximately thirteen times that of the ambient air
in the tunnel. This relatively large cross-section difference allows accurate meas-
urements of the propane mole fraction field within the plane of the laser sheet via
planar Rayleigh imaging from the flow.

The resulting propane mass fraction field corresponds to a generic Sc¢ ~ 1 conserved
scalar field {(x, ), and thus allows study of the fine-scale structure that results from the
turbulent mixing of any such near-unity Sc scalar field. It should be noted that the
interest here is not restricted to the mixing of propane and air, instead these two
constituents are employed merely to permit access to the generic fine structure of
Sc ~ 1 conserved scalar fields in turbulent shear flows.

2.1. Flow conditions

Measurements were obtained for J, = 0.041 N and U, = 15.0 m s™! at four different
locations in the self-similar far field of the turbulent shear flow, as indicated
schematically in figure 1. The prefixes of the five cases listed in table 1 correspond to
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these measurement locations. These include two axial locations at downstream
distances x = 0.3 m and 0.5 m from the jet source, which in relation to the nozzle
diameter d, correspond to x/d, =39 and 65. In terms of the proper downstream
similarity coordinate for axisymmetric coflowing turbulent jets, these two axial
locations correspond to x/9 = 45 and 75, placing the measurements well into the self-
similar far field of the flow and between the jet-like (x/9 — 0) and wake-like (x/9 — c0)
similarity scaling limits (see §4.3 of Part 1). The corresponding local outer-scale
Reynolds numbers Re, = ud/v at these two axial locations are 14000 and 11000
respectively, where the notation is the same as in Part 1.

The experiments were designed so that buoyancy effects were negligible at the
conditions listed in table 1. This is quantified in terms of the proper buoyancy (Morton)
lengthscale /,, for turbulent jets issuing with combined momentum and buoyancy flux
from a jet source, which scales their transition from the momentum-dominated to the
buoyancy-dominated regimes (e.g. Papanicolaou & List 1988). The pure jet-like
(buoyancy-free) limit of the flow holds for x//,, <1, with buoyancy and initial
momentum effects both important over 1 < x//,, < 10, and with the flow essentially
reaching the pure plume-like (buoyancy-driven) limit beyond x//,, > 10. For the two
downstream locations in table 1, the corresponding values of x//,, are 0.27 and 0.45,
and are thus both well within the non-buoyant regime.

For each case in table 1, typically 100 individual, temporally uncorrelated, spatially
resolved data planes were collected, each consisting of 256 x 512 individual point
measurements of the conserved scalar field ¢(x, 7). Of these typically 50 to 75 planes
were identified as being essentially dust-free for detailed analyses of the fine structure
associated with the Sc ~ 1 conserved scalar mixing process.

2.2. Spatial and temporal resolution

The laser sheet had a pulse duration of typically 10 ns, and its 1/e thickness was
measured as 230 um and varied insignificantly over the imaged portion of the sheet.
Rayleigh scattered light from the propane and air in the imaged portion of the laser
sheet was measured with a 12-bit slow-scanned thermoelectrically cooled imaging
array. To avoid degrading the spatial resolution, no image intensification was used.
The array was sampled to produce individual data planes of the Rayleigh signal in a
256 x 512 element format, with each element having dimensions 23 pm x 23 pm, and
the light collection optics were arranged to produce a 1:1 image ratio. The resulting
volume in the flow imaged into each pixel in the array had characteristic spatial
dimensions of 23 um x 23 um x 230 pm, and its output represents the Rayleigh signal
integrated over the 10 ns laser pulse duration. This image volume and integration time
must be compared with the finest spatial and temporal scales of the local conserved
scalar field.

The procedure for estimating the smallest length and time scales appearing in the
scalar field for these Sc ~ 1 experiments is identical to that outlined in §4.3 of Part 1;
only the Schmidt number is different. In this case, as indicated in table 2, the 10 ns laser
pulse duration was fast enough that the temporal resolution requirement Az A,/U
could be easily satisfied (though the elapsed time AT between acquisition of successive
data planes was very large in comparison with A,/U, so that the planes were all
temporally uncorrelated). Maps similar to those in figure 5 of Part 1 for the spatial
resolution requirements can be constructed for each of the two axial locations in the
present experiments. The resulting spatial resolution achieved for all five cases in table
1 are shown in table 2, where it can be noted that all the measurements are fully
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A, Ax,Ay Az A,/ U At
Designation (um) (um) (um) (ms) (ms)
A0689 1060 23 230 0.060 10-°
C0689 1060 23 230 0.060 1073
D0689 690 23 230 0.036 107°
E0689 690 23 230 0.036 10-°
H0689 1060 23 230 0.060 1073

TABLE 2. Spatial and temporal resolution estimates.

resolved, since max (Ax, Ay, Az) < 1A,,. Evidence will be seen in the results that follow
that this resolution is indeed sufficient to resolve the fine-scale structure of the
conserved scalar field in these experiments.

2.3. Data reduction

The Rayleigh scattered light intensity collected by the array was converted to the
conserved scalar (propane mass fraction) field {(x, ) following a procedure similar to
that in §4.5 of Part 1. The fixed pattern in the array was first determined from dark
measurements and subtracted from each data plane. Next the transfer function
obtained from measurements with pure air in the test section was used to correct for
flat field effects and other non-idealities in the optical system. The pure-air signal level
was then subtracted, the resulting data converted from propane mole fraction to mass
fraction, and finally rescaled to 8-bits digital depth. Lastly, a uniform 5 x 5 pixel filter
was applied over each data plane, which is large enough to remove most shot noise
effects prior to differentiation yet small enough relative to A, so as not to significantly
affect the spatial resolution of the measurements (see table 2). The resulting conserved
scalar data {(x, ) were then used to generate the two-dimensional scalar dissipation
fields y(x, 7) via the template in (4.9) of Part 1, and to generate the in-plane scalar
gradient vector orientations tan 9(x, f) via the template in (4.10) of Part 1.

2.4. Noise analysis

Whereas the uncooled photodiode array in Part 1 operated in the camera noise limited
regime, for which the noise level o, in the data is independent of the signal, the 12-bit
thermoelectrically cooled and slow-scanned CCD array used in the present
measurements has a much lower relative camera noise level, and consequently operates
in the shot noise limited regime. Thus the noise level o, in these data scales with the
square root of the signal, and the signal-to-noise level increases with the square root
of the signal. Measurements of the remaining shot noise level in the {(x, 7) data from
§2.3 above showed that o, was less than 1 digital signal level in the pure air data,
whereas the highest conserved scalar signal levels spanned the full 256 digital signal
levels attainable with 8-bit data. Scaling this noise level with the square root of the
Rayleigh signal level derived from the air and propane scattering cross-sections and the
local propane mole fraction indicates a noise level o, of about 2 digital signal levels out
of the 100 digital signal levels corresponding to the mean scalar value. The
corresponding noise in the scalar dissipation fields that result from differentiation of
these data can be obtained as outlined in Appendix A of Part 1, with the resulting levels
being approximately 1 digital level out of 25 at the mean scalar dissipation value, and
2.2 out of 256 at the peak dissipation value. No explicit smoothing or filtering has been
applied to any of these dissipation fields.
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3. Structure of the scalar and dissipation rate fields

Typical results are presented in this section for the Sc ~ 1 conserved scalar fields
{(x, t) and the scalar energy dissipation rate fields y(x, 1) = (Re Sc) ' V{-V{(x, 1)
obtained at each of the four locations in figure 1.

3.1. Sample fields

Figures 2-5 show typical data planes for each of the measurement conditions listed in
tables 1 and 2. In each case, the jet centreline coincides with either the right- or left-
hand edge of each data plane, as indicated by the axes, which also give the spatial
extent of each plane in terms of the local strain-limited vorticity diffusion lengthscale
A,. Since the flow and imaging conditions for all these cases were identical except for
the two differing downstream locations, the relative size of these planes depends only
on the downstream location. Note also that, unlike the S¢ 1 measurements in Part
1, in these Sc¢ ~ 1 measurements the field of view is not confined to the inner flow scale
A,, but spans from the jet centreline to slightly beyond the outer edge of the flow. As
a consequence, it must be kept in mind that assumptions regarding isotropy of the
scalar gradient field invoked in deconvolving certain statistical measures of the
dissipation field are likely to be poorer approximations than was the case for the Sc

1 measurements in Part 1. This will be examined in more detail in the sections that
follow.

For the conserved scalar fields {(x, t) in part (a) of each figure, the 256 different
colour levels discernible with these 8-bit data each denote narrow ranges of the local
instantaneous conserved scalar value. In each case, pure blue denotes the lowest range
of scalar values, beginning at { = 0 (pure ambient fluid), with colours ranging from
blue to red identifying linearly increasing scalar values, and with pure red denoting the
highest 0.1 % of values seen. Similarly, for the scalar dissipation rate fields y(x, ), pure
black denotes the lowest range of dissipation values, beginning at y = 0, with the
remaining 255 colours ranging from pure blue to pure red denoting linearly increasing
dissipation rates. The highest 0.1 % of the dissipation rates are again typically mapped
to pure red. In the logarithmic presentations log, y(x, ?), the lowest level is again
coloured black and denotes zero and very low dissipation rates, with the remaining
colours identifying logarithmically increasing dissipation rates, and with pure red again
typically denoting the highest 0.1 % of the logarithmic dissipation rate values.

The derivatives computed within each spatial data plane give the projection of the
true three-dimensional scalar gradient vector field V{(x, f) onto the data plane. Note
that the dissipation values shown thus underestimate the true dissipation wherever the
scalar gradient vector has a strong out-of-plane component. However it should be
noted that while the dissipation fields obtained may underestimate the magnitude of the
true dissipation values, they nevertheless provide an accurate picture of the structure
of the dissipation field, except at those points where the true scalar gradient vector
points virtually perpendicularly to the imaging plane. Furthermore, subject to the
limitations on the assumption of isotropy in the scalar gradient vector field, even
statistical quantities associated with the magnitude of the true dissipation rate field can
be correctly obtained from the present two-dimensional approximations using the
techniques described in Dahm & Buch (1989) and in the Appendix.

3.2. Structure

The scalar dissipation rate fields in figures 2-5 allow the basic structural features
associated with mixing of Sc¢ ~ 1 conserved scalars in turbulent flows to be identified.
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As can be seen in the linear dissipation maps in these figures, and even more clearly in
the logarithmic presentations (which reveal the structure at low dissipation values), the
scalar dissipation rate field is largely concentrated in a set of convoluted sheet-like
strained laminar diffusion layers. That the canonical structure seen is due to the
intersection of a sheet-like topology with the measurement plane can be deduced from
the observation that, if line-like or similar topologies were present, then roughly
circular intersections should be seen wherever the measurement plane coincides at least
approximately with the diametral plane of such a structure. Such circular intersections
would then occur with a probability consistent with the near-isotropic scalar gradient
vector orientations, yet essentially no such topologies can be found in the data.

The characterization of the fine-scale structure in the present Sc ~ 1 dissipation
fields as locally sheet-like appears appropriate, since the radius of curvature of these
layers is typically somewhat larger than their thickness. However the layers clearly are
much more contorted than was the case at S¢ 1, and in some places the local radius
of curvature is even comparable to the local layer thickness. Note also that, as was the
case for S¢ 1 in Part 1, both isolated and interacting layers can be identified.
Consistent with this, note that there are no layers at this location in the flow bounded
by scalar endpoint values ({*, ) = (1, 0), and very few layers have {~ = 0. Essentially
all the dissipation layers are between two different mixed fluid states, consistent with
the results for S¢ 1 in Part 1.

Although the basic fine-structure element in both the S¢ 1 and the Sc ~ 1 scalar
dissipation fields appears to be a set of sheet-like layer structures, there are two major
differences due to the different Schmidt numbers. The layers in the Sc¢ 1 fields are
locally parallel to neighbouring layers, and are distorted by the underlying flow over
a lengthscale that is typically many times greater than the thickness A,, of the layers.
By comparison, individual layers in the Sc =~ 1 fields are generally oriented very
differently from adjacent layers, and the scale over which they are distorted is typically
at most a few layer thicknesses. As discussed in §1.1, the two relevant lengthscales
associated with this stretching and folding of the dissipation layers are the local strain-
limited vorticity diffusion scale A, and the corresponding local strain-limited scalar
diffusion scale A, related as A, = A, Sc¢”/%. For the results in Part 1, where Sc ~ 2000,
this gives A,/A, & 1/45, so the scalar field varied on a much finer scale than that on
which gradients in the underlying vorticity and strain rate fields occurred. As a
consequence, over distances many times the characteristic thickness A; of the
dissipation layers, the vorticity and strain rate fields were essentially uniform. Thus any
given layer maintained essentially the same thickness and orientation over a lengthscale
many times its own thickness. Moreover, neighbouring layers were subjected to the
same vorticity and strain rate values, and therefore had similar orientations and
thicknesses.

On the other hand, when the Schmidt number is near unity, the two lengthscales A,
and A, are essentially the same, and consequently the vorticity and strain rate remain
uniform only over a lengthscale typically comparable to the local thickness A,, of the
dissipation layer. Any given layer therefore maintains its orientation over an extent
comparable to at most a few times its local thicknesses before differential rotation
effects due to gradients in the vorticity field distort or even fold the layer back onto
itself. This can be seen in the Sc ~ 1 results in figures 2-5. Furthermore, neighbouring
layers are subjected to significantly different vorticity and strain rate values, and
therefore can have very different orientations and somewhat different thicknesses. The
results in figures 2—5 confirm that this is the case. Moreover, keeping in mind that
neighbouring layers in the Sc & 1 scalar dissipation fields will generally not remain
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parallel, it appears that even the low- to mid-ranged scalar dissipation rates (blue to
green colour values in the logarithmic maps in figures 2-5) also correspond to layer-
like structures, but that these are locally oriented strongly tangent to the measurement
plane and thus appear at lower values in these two-dimensional gradient approxi-
mations.

3.3. Magnitudes

As was the case in the S¢ 1 results from Part 1, the scalar dissipation fields in the
linear maps in figures 2—5 show that high dissipation values occur only rarely and are
clearly confined to easily identifiable layer-like structures. Low dissipation values,
corresponding to blue colours in these same linear dissipation maps, cover a much
larger volume fraction of the flow. An assessment of the distribution of scalar
dissipation rates, including an isotropy correction to account for the missing gradient
vector component, is given in §4.2. Note that, while the linear dissipation maps give a
clear view of the internal intermittency, they do not allow as clear an identification of
their underlying topology at low dissipation rates. By comparison, the corresponding
logarithmic colour maps, especially when coupled with the arguments regarding layer
orientations noted above, clearly reveal the structure at low values, and suggest that
even these low dissipation rates are also concentrated in laminar sheet-like diffusion
layers.
3.4. Similarity

As in the S¢ 1 measurements in Part 1, the logarithmic forms of the dissipation rate
fields in figures 2—5 suggest that the internal profile of scalar dissipation values across
each of these layers appears to be at least roughly self-similar. The magnitude of the
scalar dissipation clearly varies along the length of any given layer (and does so much
more rapidly than for S¢ 1 in Part 1), yet the dissipation profiles across all of the
layers in the present Sc &~ 1 data nevertheless appear at least qualitatively to have
nearly the same internal structure. A detailed assessment of this internal structure in
the dissipation layers is presented in §5, where comparisons with the self-similar
canonical solutions for isolated strained laminar diffusion layers from Part 1 are also
given.
3.5. Thicknesses

Finally, note that the thicknesses of the layer-like structures seen in figures 2-5 do not
appear to span a very wide range. Although as noted above there is a greater variation
in thickness among neighbouring layers than was the case at S¢ 1, the overall range
of thicknesses appears qualitatively comparable to that seen in Part 1. A detailed
analysis of the distribution of apparent diffusion layer thicknesses, including a
correction based on isotropy that corrects for the layer orientations, will be given in §6,
and an assessment of the scaling properties of the diffusion layer thickness distribution
is given in §7.

4. Statistics of the scalar and dissipation rate fields

Data such as those in §3 allow various statistical measures of the Sc¢ ~ 1 conserved
scalar mixing process in turbulent flows to be determined and, by comparing with
corresponding results from Part 1, allow identification of Schmidt number effects on
these statistics. Moreover, the simultaneous conserved scalar and scalar dissipation
rate fields obtained from these measurements allow determination of the joint
distributions of scalar and scalar dissipation rates, which are of direct interest in many
approaches to modelling turbulent reactive flows.
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FIGURE 6. Results obtained at x/9 = 45 and 75 for cumulative distributions (a) 4,(x) and (b) 4,(y)
in (6.1) and (6.2) of Part 1 for Sc¢ ~ 1 scalar mixing. Corresponding scaled distributions demonstrating
similarity are shown in figure 7.
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FIGURE 7. Cumulative distributions 4,(y) and 4,(yy) from figure 6 scaled on measured local mean
dissipation values y,.,, showing self-similarity in scalar dissipation rates at x/9 = 45 and 75.

4.1. Cumulative distributions

As was noted for the present Sc &~ 1 data in figures 2-5, as well as for the S¢ 1 results
in Part 1, high dissipation rates are seen in only a relatively small fraction of each of
the measured data planes. This can be quantified by the cumulative distributions 4,( )
and A4,(y), defined in (6.1) of Part 1, for which results are shown in figure 6(a, b) for
each of the five cases in table 1. The similarly of these distributions can be assessed by
normalizing the result obtained for each case with the corresponding measured mean
dissipation value y;,.,. These scaled distributions are shown in figure 7(a, b), where it
can be seen that the different cases essentially collapse to a single and presumably
quasi-universal curve in each panel, demonstrating that the scalar dissipation fields for
all these cases are composed of similar distributions of dissipation rates. The
cumulative distributions in figure 7 (a, b) give a quantitative measure of the intermittent
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FIGURE 8. Probability densities p.d.f.(yy) of scalar dissipation rates measured at x/9 = 45 and 75,
scaled on local mean dissipation value y;,q,.

nature of the scalar dissipation fields, where the scalar dissipation rate is very low in
most of the flow with only intermittent regions containing high dissipation rates.
Moreover, the near-perfect collapse seen in figure 7 of these results obtained at these
two different downstream locations, where the resolution is significantly different (see
table 2), also indicates that the resolution achieved in these measurements at both
locations is adequate to resolve essentially all of the structure in the scalar dissipation
rate fields.

4.2. Probability densities

The self-similarity of the curves in figure 7 suggests that the associated probability
densities of scalar dissipation rates will show a similar degree of universality.
Accordingly, figure 8 shows the probability density for each of the five cases in table
1, with the dissipation values in each case scaled by their respective mean values. The
self-similarity suggested by figure 7 is evident in the agreement obtained between all five
curves. Note also that, as was seen in the Sc¢ 1 results in Part 1 and as is often
assumed for dissipation p.d.f.s in turbulent flows, the resulting scalar dissipation
distribution in figure 8 appears to be at least roughly lognormal. This will be examined
in more detail in the results below.

In figure 9 we compare the scaled distribution obtained for Sc¢ 1 in Part 1 with the
result for Sc ~ 1 from figure 8. It is apparent that both distributions are roughly
similar, and both show high levels of intermittency. However it is also apparent that
the Sc¢ 1 scalar dissipation fields showed somewhat stronger intermittency than do
the present Sc ~ 1 fields, as evidenced by the corresponding distribution in figure 9
being more concave at low dissipation rates. This would appear consistent with the
higher Péclet number (Re Sc¢) in the S¢ 1 fields, which have outer-scale Reynolds
numbers of the order of 3000 but a Schmidt number of 2000, and therefore yield values
much higher than the present Sc ~ 1 cases with outer-scale Reynolds numbers (and
therefore Péclet numbers) of the order of 10000.

The dissipation values in figure 8 are obtained from two-component estimates of the
true scalar gradient vector, and thus inherently underestimate the true dissipation
values. As noted in Part 1, while it is impossible to obtain the true instantaneous local
scalar dissipation rate at any point from such measurements spanning only two of the
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FIGURE 10. Distributions of in-plane scalar gradient vector orientations ¢ for two typical cases. Peaks

result from differentiation of discrete data. Note slight tendency for preferred orientations along
radial direction, corresponding to ¥ = +m/2.

three spatial dimensions, it is nevertheless possible to obtain the distribution of true
dissipation rates from such lower-dimensional measurements via a technique described
by Dahm & Buch (1989) under the assumption of a known distribution of the scalar
gradient vector orientations. If the scalar gradient orientations are assumed to be
isotropically distributed, then the joint distribution f(), ) of spherical orientation
angles ¢ and as defined in Part 1 is simply (1/4n) sin . The resulting projection of
the true scalar gradient vector onto any measurement plane will then produce a
uniform distribution #(9) of apparent orientation angles in that plane. As a check on
the validity of this isotropy assumption, the measured distributions of in-plane scalar
gradient vector orientation angles ¢ at each of the two downstream locations are
shown in figure 10. The spikes in these distributions, which occur at precisely regular
intervals and with an extremely high degree of symmetry in their amplitudes, are due
to the discrete nature of the data, as discussed in Part 1. Putting these spikes aside, the

1 in Part 1 and present results for Sc ~ 1.

15



16 K. A. Buch and W. J. A. Dahm

0.4
A0689
................ C0689
- - — - D0689
03} - — - E0689 1
- - — H0689
p.df. (log,x) o02r
01t
5.0 -2.5 0 25 50

IogeX”Oge X50%

FIGURE 11. Distribution of the logarithm of the full three-dimensional scalar dissipation rates,
obtained via isotropy as in the Appendix.
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FIGURE 12. Distributions of conserved scalar values { scaled on measured local mean value §,,.

distributions obtained are indeed largely independent of &, though a small and overall
roughly sinusoidal variation with period ® appears to be discernible. This would
suggest a very slight degree of anisotropy corresponding to a tendency of the
dissipation layers to lie along the downstream direction; that is, with their layer
normals oriented in the radial direction, consistent with a similar observation in Part
1. This anisotropic tendency is somewhat more pronounced here than for the Sc¢ 1
data, which is perhaps to be expected since the Sc &~ 1 measurements reach out beyond
the local jet width while the S¢ 1 measurements cover only a small region in the
interior of the flow.

Accepting the assumption of isotropy in the scalar gradient field, the measured
distributions of scalar dissipation rates in figure 8 can be converted to the corresponding
distributions of three-dimensional scalar dissipation rates. The result is shown in figure
11 in logarithmic form, which corresponds to the distribution of values seen in the
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FIGURE 13. Joint probability densities of conserved scalar and two-dimensional scalar dissipation
obtained at (a) x/9 =45 (D0689) and (b) 75 (A0689). Corresponding distributions for three-
dimensional dissipation are shown in figure 14.
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FIGURE 14. Joint probability densities of conserved scalar and three-dimensional scalar dissipation at
(a) x/9 =45 and (b) 75, obtained from measured results in figure 13 via isotropy as in Appendix.

logarithmic maps in figure 2-5. Note that the result at very low dissipation values was
obtained by linearly connecting the last non-zero dissipation value in the linear
distributions in figure 8 to zero. A roughly lognormal form of the dissipation
distribution is evident by the approximately Gaussian form of the result in figure 11.
Note also that the agreement among these distributions, which were obtained at
different levels of resolution (see table 2), further indicates that these measurements of
the Sc ~ 1 scalar dissipation rate field are essentially fully resolved.

Figure 12 shows the distributions of conserved scalar values for each of the five cases
in table 1, scaled by their respective mean values. Since the two x /9 values do not differ
greatly, these distributions show relatively good agreement. In contrast to the
corresponding result in Part 1, note that the peak scalar values for S¢ ~ 1 are typically
only about twice the mean value, whereas for S¢c 1 the peak was found to be over
four times the mean value.
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FIGURE 16. Comparison of cumulative distributions for mixing density in figure 15 from present
Sc &~ 1 results and corresponding results for Sc 1 from Part 1. Results are shown for both two- and
three-dimensional dissipation rates.

4.3. Joint probability densities

Figure 13(a, b) shows the measured joint distributions of the conserved scalar and
scalar dissipation rate for the two axial locations. It is readily apparent from these
results that {(x, ¢) and y(x, 7) are statistically independent, as is often assumed for
modelling purposes. Note also that the contours shown increase logarithmically, with
adjacent levels changing by factors of two. The dissipation values shown are the two-
component estimates that result from differentiation within each data plane. Owing to
the statistical independence between the conserved scalar and the scalar dissipation
rate, the conditional two-dimensional scalar dissipation distributions obtained by
integrating the results in figure 13 over narrow ranges of { can then be converted to the
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corresponding three-dimensional scalar dissipation distributions as in §4.2. These
marginal distributions can then be recombined to produce the joint distribution of the
conserved scalar and the three-dimensional scalar dissipation values. The result is
shown in figure 14, where adjacent contours again differ by factors of two. These can
be compared with the corresponding distributions for S¢ 1 scalar mixing in figure 23
of Part 1.

4.4. Spatial density of the mixing process

The cumulative distributions and probability densities described above verify the high
level of internal intermittency characteristic of high-Reynolds-number turbulent
mixing. This intermittency can be viewed more directly in terms of the fraction of the
total flow volume required to achieve a given fraction of the total mixing. Figure 15
shows this result for each of the two axial locations, in each case showing the
corresponding curves for the scalar dissipation rates obtained from both the two-
component and three-component gradient vector distributions. The results for the full
three-component scalar dissipation show that just 4% of the total flow volume
accounts for 25% of the total mixing achieved, while 75% of the mixing is
accomplished in 30 % of the volume. Figure 16 compares these curves for S¢ 1 and
Sc ~ 1 data, where it can be seen that in accordance with the results in §4.1 the
Sc 1 dissipation fields show slightly higher intermittency. The Sc = 1 scalar
dissipation field requires about 30 % of the total volume to achieve 75 % of the total
mixing, whereas in the large-Schmidt-number case this is accomplished in about 25%
of the volume.

5. Internal structure of the dissipation layers

The extent to which the scalar dissipation layers in figures 2—5 conform to the simple
local canonical solution for an isolated sheet-like scalar diffusion structure outlined in
§7 of Part 1 can be determined by comparing the internal structure within the
dissipation layers with this solution. In particular, the conserved scalar values across
the dissipation layer would show an error function profile, while the scalar dissipation
profile would be Gaussian and its logarithm would show an inverted parabolic form.
These characteristic shapes can be compared with those in figure 17, where profiles
along typical intersections through each of these fields are shown. Note that the profile
shapes agree at least qualitatively with the corresponding functional forms noted
above. While the Sc¢ ~ 1 profiles appear to conform more closely to these canonical
forms than do the corresponding Sc¢ 1 profiles in Part 1, it is likely that this is due
to the higher spatial resolution relative to A, of the present measurements.

Quantitative comparisons with the canonical dissipation layer structure can be
obtained using moments of the local scalar dissipation profiles, as was done for the
Sc  1datain§7.4 of Part 1. In particular, the third moment can be characterized by the
skewness S, which is zero for symmetric functions like the Gaussian form in (7.12) of
Part 1. Similarly, the normalized fourth moment (the kurtosis K) for a full Gaussian
profile is precisely 3, and if the Gaussian is clipped at its 20 % points and renormalized
becomes 2.26. Collecting values for S and K from all possible intersections through the
dissipation layers in all the data planes allows the resulting distributions to be obtained.
The statistics converge rather quickly. For example, figure 18 verifies that the measured
skewness distribution converges after just a few planes, since each plane contributes a
relatively large number of individual profile intersections. The resulting distributions of
S and K at both downstream locations are shown in figure 19 (a, b), where it can be seen
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FiGUure 18. Distributions of skewness for all layer-normal profiles through isolated molecular
diffusion layers in the Sc ~ 1 scalar dissipation rate fields, showing convergence with number of data
planes analysed.
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FIGURE 19. Distribution of (a) skewness and (b) kurtosis values for all layer-normal profiles at
x/9 =45 (D0689) and 75 (A0689). Canonical solution in Part 1 gives S =0 and K = 2.25.

that the skewness values are indeed narrowly distributed around zero, and the kurtosis
values are distributed around 2.26, in good agreement with the canonical solution.
If the scalar dissipation rate fields were composed entirely of such isolated sheet-like
strained laminar diffusion layers then, as noted in §7.4 of Part 1, the distribution of
maximum dissipation values within each layer-normal profile, together with the
distribution of scalar endpoint values ¢ and ¢, would completely define the
probability density function of the scalar dissipation rate field. Equivalently, these
endpoint values and the layer thickness determine the maximum dissipation value for
each layer intersection as y,,.. ~ ({"—{¢)?/A3. Figure 20 shows the distribution of the
local dissipation maxima from the Sc¢ ~ 1 data, where good agreement is seen between
the cases at x/9 = 45 and 75 when scaled by their respective median values. In figure
21 this distribution is compared with the result obtained in Part 1 from the Sc¢ 1
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FIGURE 21. Comparison of layer-maximum dissipation values from present Sc ~ 1
results and corresponding results for S¢ 1 from Part 1.

measurements. The differences seen are conceptually consistent with the differences
noted above in the levels of internal intermittency for the Sc ~ 1 and S¢ 1 dissipation
rate fields.

6. Dissipation layer thicknesses

As was noted for both S¢ 1 and Sc ~ 1, the apparent thicknesses of the scalar
dissipation layers in figures 7-13 of Part 1 and figures 2-5 above are seen to change
from one case to another, but within the data from any one case the apparent
thicknesses do not vary over a wide range. This is remarkable in view of the strain-
diffusion analysis given in §7 of Part 1. In particular, from (7.6) of Part 1, when ¢, is
of the order of the local inner-scale strain rate (u/5)Re}?, then the equilibrium strain-
limited diffusion lengthscale would be (A/8) ~ Re;®/* and corresponds to the local

Kolmogorov scale. On the other hand, when ¢, is of the order of the local outer-scale
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FIGURE 22. Distribution of measured in-plane scalar dissipation layer thicknesses at x/¢ = 45
(D0689) and 75 (A0689). Corresponding results corrected for orientation effects as in the Appendix
are shown in figure 23.

strain rate (u/d), then the resulting strain-limited equilibrium lengthscale becomes
(A/8) ~ Re;'* and corresponds to the local Taylor scale. Since the strain rate field in
turbulent flows is classically viewed as varying between these inner-scale and outer-
scale limiting values, the resulting range of equilibrium lengthscales expected at even
moderate values of the outer-scale Reynolds number Re; would be considerably larger
than that seen in these figures.

Of course, some caution must be exercised in inferring the range of dissipation layer
thicknesses from these figures, since the dissipation fields were obtained from the two-
dimensional projection of V{(x, r) onto the measurement plane. The out-of-plane
component of the gradient vector was therefore not accounted for in the local
dissipation value. As a consequence, if a layer-like structure were oriented largely
tangent to the measurement plane, the two-dimensional dissipation obtained would
appear to be very low, corresponding to blue values in the colouring schemes used.
Since the yet lower dissipation rates corresponding to the tails of the normal profile
across the layer would then be coloured lack, the apparent thickness of the layer might
appear very similar to that of a layer oriented largely perpendicularly to the
measurement plane.

To obtain an accurate assessment of the range of true dissipation layer thicknesses,
a quantitative investigation to determine the distribution of layer thicknesses was
undertaken involving a technique described in the Appendix that corrects for these
orientation anomalies based on the assumption of isotropy in the scalar gradient field.
This assessment was based entirely on the Sc &~ 1 data, since the higher relative spatial
resolution allows a more accurate determination of the distribution of layer thicknesses.
The local layer thickness A,,,, for each normal intersection through every dissipation
layer was defined as the full width along the local layer-normal dissipation profile
between the points where the dissipation had decreased to 20 % of the local profile
maximum value. Figure 22 shows the resulting apparent layer thickness distributions
for the two axial locations in table 1. Note that there is a relatively narrow range of
thicknesses at each downstream location. As might be expected from (4.15) of Part 1,
the measured thicknesses increase with increasing downstream location x/, owing
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FIGURE 23. Distributions of apparent two-dimensional dissipation layer thicknesses (dashed line) and
true three-dimensional layer thicknesses (solid line) at (a) x/9 = 45 and (b) 75, obtained from results

in figure 22 as described in the Appendix.
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FIGURE 24. Comparison of true three-dimensional dissipation layer thicknesses at x/% = 45 and 75
from figure 23. Results scaled on local mean layer thickness are shown in figure 25.

both to the increase in ¢ and the decrease in Re;. Notice also that each of these
distributions has a long tail extending to relatively large layer thicknesses, which
corresponds to the contributions from layers intersecting the measurement plane at
increasingly tangential orientations. An accurate determination of the true maximum
and minimum layer thickness values requires that these orientation effects be removed
from the distributions. In a similar manner as was done above and in Part 1 to
statistically account for the missing scalar gradient vector component in the dissipation
distributions, the Appendix presents the procedure for obtaining the distribution of
true three-dimensional layer thicknesses from the measured distribution of apparent
two-dimensional layer thicknesses under the assumption of isotropy in the V{(x, 1)

field.
Figure 23 (a, b) shows the results obtained after applying this correction to each of
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from figure 24 scaled on local mean layer thickness, showing apparent similarity. Mean scalar
dissipation layer thickness is A,,/d &~ 11.2- Re;®* Sc¢™'2.

the apparent layer thickness distributions in figure 11. In particular, note that the tail
at large thickness values in each of the original distributions disappears, while the
smallest thickness values are essentially unchanged, since these should correspond to
genuinely thin layers that intersect the measurement plane at nearly normal
orientations. A comparison of the resulting three-dimensional layer thickness
distributions at the two downstream locations is presented in figure 24, where the
expected increase in layer thicknesses with increasing downstream location x/9 can be
readily seen.

In figure 25 the three-dimensional layer thickness distributions from figure 24 (a, b)
are shown after each has been scaled with its mean thickness value. Note that the two
scaled distributions in figure 25 collapse remarkably well, indicating a self-similar
distribution of true three-dimensional dissipation layer thicknesses. Moreover, this
collapse of the measurement results obtained at these two different downstream
locations, having significantly different resolution (see table 2), further indicates that
the present measurements are essentially fully resolved. Of particular importance for
the purposes of this section is the observation in figure 25 that the largest layer
thicknesses are roughly 1.5 times the local mean thickness value, and that the smallest
layer thicknesses are approximately 0.5 times the local mean thickness. The total range
of thicknesses thus spans only a factor of three.

The mean thickness values in figure 25 at x/J = 45 and 75 are 455 pm and 505 pm,
respectively. From the conditions in table 1 and the scaling laws in (4.1, b) of Part 1,
the resulting constants in the thickness scaling A,,.,/6 = A4 Re;** S¢™/? are found to be
{Ay =149 and 11.2 at x/9 = 45 and 75, respectively. Taking the value at x/9 = 75
to be more accurate owing to the somewhat higher relative resolution gives the
corresponding range of scaling values

M pe 2 1685 (A & 1125 (A, & 5.6. (7.1)

These characteristic values, and indeed the entire distributions in figure 25, would
presumably be quasi-universal, and thus apply for sufficiently high outer-scale
Reynolds numbers in all equilibrium turbulent shear flows.
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7. Scaling of the dissipation layer thicknesses

The scalings constants in (7.1) assume that the entire range of diffusion layer
thicknesses obey Kolmogorov scalings. However, if the maximum and minimum
thicknesses scale differently with Reynolds number, then these scaling constants will
appear to change as Re; changes. Accepting that the thinnest layers must follow
Kolmogorov scaling, in view of the discussion in § 6 perhaps the most plausible of such
alternative Reynolds number dependencies is for the thinnest layers to be set by the
local inner-scale strain rate (u/5) Re)/* and thus follow Re;** (Kolmogorov) scaling,
and the thickest layers to be set by the local outer-scale strain rate (1/8) and thus follow
Re;'? (Taylor) scaling.

To judge these two options from the layer thickness distributions in figure 25, it must
be noted that the Re; range represented (see table 1) is too small to identify any
Reynolds number effect that would result from a potential Taylor scaling of the
thickest layers. However, if we accept that the thinnest layers must follow Kolmogorov
scaling and postulate that the thickest layers follow Taylor scaling, then if all other
factors in the two strain rate scalings are taken to be the same, this would require the
ratio of the maximum to minimum thicknesses to be approximately Re}*. For the
Re,; ~ 10" in each of the thickness distributions in figure 25, this would imply a ratio
of the maximum to minimum thicknesses of about 10, while the measured ratio is only
about 3. In view of the very high spatial resolution represented in these Sc = 1
measurements, it seems unlikely that the rather large difference in these ratios can be
attributed to experimental uncertainty. On this basis, it is therefore tentatively
concluded that both the maximum and minimum dissipation layer thicknesses follow
Kolmogorov scaling, and that the Re, scalings inherent in (7.1) and the constants given
are indeed correct.

8. Discussion and conclusions

The results presented here offer comparably detailed views of the fine-scale structure
of Sc¢ ~ 1 conserved scalar mixing in turbulent flows as did the results in Part 1 for
Sc 1 scalar fields. These imaging measurements have provided highly resolved data
on the conserved scalar and scalar gradient fields, and give a physical picture of the
fine-scale structure of the scalar mixing process. The excellent agreement of results
obtained in figures 7(a, b), 8, 11, 12, 15, 19(a), 20 and 25 at two different downstream
locations, with different levels of resolution as indicated in table 2, suggests that the
resolution achieved in these measurements at both locations is adequate to resolve
essentially all of the structure in the scalar energy dissipation rate fields.

Perhaps most noteworthy is the observation in §3 of a fundamentally sheet-like
topology of the scalar dissipation rate field in Sc¢ ~ 1 conserved scalar mixing, despite
the fact that the lengthscale on which these layers are folded by vorticity gradients is
comparable to the layer thickness. As was noted in Part 1, the topology of the scalar
mixing process in turbulent flows is considerably simpler than that of the underlying
vorticity field, since the dynamics of the former can sustain only sheet-like structures,
whereas the latter can sustain both sheet-like and line-like structures (see §7 of Part 1).
Moreover, the internal structure of these dissipation layers is the same as for S¢ 1
scalar mixing, and in good agreement with the canonical solution in §7.3 of Part 1. The
present results have also determined the distribution of true dissipation layer
thicknesses, which based on the above considerations should presumably apply to
Sc¢ 1 scalar mixing as well. In particular, the thickness constant A for A/8 ~ Re;**
Sc™2 ranges from 5.6 to 16.8, with the mean thickness corresponding to 11.2, where
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the dissipation layer thickness A and the local outer scale ¢ are defined as noted above
and in Part 1. The distribution of thickness values appears to be self-similar and of the
form given in figure 25, with the largest and smallest thicknesses tentatively appearing
to both follow Kolmogorov (Re;®*) scaling.

Despite these similarities in the fine-scale structure of S¢ 1 and Sc ~ 1 conserved
scalar mixing in turbulent flows, the present results have also shown a number of
important differences. In particular, the orientations of neighbouring dissipation layers
are nearly the same at S¢ 1, but at Sc &~ 1 can be very different. Indeed the patterns
into which the present Sc ~ 1 dissipation layers are arranged by the continual
stretching and folding of the underlying strain rate and vorticity fields bears little
resemblance to those seen at Sc¢c 1 in Part 1. Also, the peak conserved scalar value
relative to the local mean seen in these Sc ~ 1 data in figure 12 is considerably lower
than that found in figure 22 of Part 1. The difference is presumably a consequence of
the higher relative diffusivity in the present case.

As was noted in §7 of Part 1, the sheet-like fine-scale structure of scalar energy
dissipation rate fields in turbulent flows, both at S¢ 1 and Sc &~ 1, is a result solely
of the strain-diffusion dynamics at diffusive scales of the flow. As a consequence, the
existence of this canonical fine-scale structure does not depend on either the Reynolds
number or the downstream location in the flow. The present results, obtained at 39 and
65 diameters downstream of the nozzle exit, showed the same structure when scaled on
appropriate variables. Indeed, the sheet-like structures are not a remnant of the
boundary conditions at the nozzle exit, but rather are continually created by the
competition between the thinning action of the local strain rate field and the thickening
that results from molecular diffusion. The only effect of changing either Re; or the local
outer scale §(x) is a change in the thickness of the sheet-like structures in accord with
A/ ~ Rey®* Sc™'2 ) and an equal change in the lengthscale on which they are folded
by gradients in the vorticity field. The ratio of these two scales, however, depends only
on Sc, and thus no fundamental change in the fine-scale structure results except by
changing the Schmidt number.

The present observation of a fundamentally layer-like topology in the fine-scale
structure of Sc &~ 1 conserved scalar mixing in turbulent shear flows has considerable
implications for modelling of non-equilibrium mixing-chemistry coupling in non-
premixed or partially premixed turbulent combustion processes. In that case, the scalar
quantity of interest is the local mass fraction of atoms originating in, say, the fuel
stream. Despite the fact that molecular species in the fuel and oxidizer streams are not
conserved under the ensuing chemical reactions, elemental mass fractions are conserved
and can be rigorously related to the local instantaneous values of the elemental
composition ¢ and mixing rate y. The former determines the local adiabatic
equilibrium composition of molecular species that form from the elemental pool, and
the latter allows for non-equilibrium corrections to this composition. A broad class of
approaches collectively termed ‘flamelet models’ aims to relate the local conserved
scalar value and scalar dissipation rate to the local molecular mass fractions, and thus
plays a key role in turbulent combustion theory and in practical approaches to
reducing emissions of regulated trace species from turbulent combustion processes.
The results from the present study, and in particular the observation that essentially all
the molecular mixing occurs in strained laminar sheet-like diffusion layers with an
internal structure that agrees with the canonical solution in §7 of Part 1, provide a
rigorous starting point for such flamelet models. The implications of this for mixing-
chemistry coupling in turbulent combustion will be examined in detail in the
forthcoming Part 3.
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Appendix. Deconvolution of the two-dimensional layer thickness
distribution to the three-dimensional distribution

The two-dimensional scalar dissipation rate fields consist of scalar gradient layers
with nearly isotropic orientations. Since the measurement plane is fixed, it will intersect
the layers at random orientations, and therefore the apparent thickness of the layers
differs from their true thickness. Correcting any apparent layer thickness to its true
thickness requires knowing its orientation angle. Under the assumption of isotropic
orientations, the distribution of dissipation layer thicknesses /(1) can be determined
from the measured distribution of apparent two-dimensional thickness in a manner
analogous to that outlined in Dahm & Buch (1989) for the distribution of scalar
dissipation rates.

Consider measurements of the layer thickness in directions oriented at some angle
9 to the layer normal. The true thickness is then related to its apparent thickness in the
measurement plane by

A= A,,,SInQ. (A1)
The cumulative distribution function, B(A,,,;A), gives the probability that any such
two-dimensional estimate, A* = of A will fall below the threshold value A and is
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expressed by the probability P( < ¢* < m—). This probability is equivalent to
AL )d rd (A2)
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Where #( , ) is the joint distribution of orientation angles. If the scalar gradient vector
orientations are isotropic, then all orientations of the layer normal and the
measurement plane are equally probable, so

pC .9 =(1/4nsin , (A4)

B(/\app//\) = [1 - (/\app//\)iz]lm' (A 5)

Equation (A 5) then gives the resulting layer thickness distribution if all the layers were
the same thickness and oriented isotropically. Even if the scalar field were not isotropic,
(A 5) could still be formulated, provided the anisotropy could be characterized in terms
of A( , ¥) to obtain an analogous result. From the cumulative distribution in (A 5), the
probability density for A,,,/A can then be obtained as

giving

_ Qy/N7
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This gives the distribution of measured, apparent layer thicknesses A, if all the true
layer thicknesses were equal to A and were isotropically oriented.
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Now consider all remaining occurrences of the scalar gradient and similarly group
these into narrow intervals centred at A, ..., A,, ..., Ay, namely,

AN = Za 5O, (A7)

where each of the weights, a,, gives the fraction of the time that A lies in the ith interval.
Since the functions f(A,,,/A;), i=1,...,N, form an independent (though non-
orthogonal) basis set under the physically correct constraint that all the @; must be non-
negative, the p.d.f. A(4,,,) obtained from the two-dimensional estimates for the scalar

dissipation is then a linear combination of the elementary p.d.f.s f(A,,,/A;), namely

FOlup) = E @y ) (A9)

with suitable renormalization to unity area. The weights, @;, can then be determined

from f(A,,,) by decomposing the p.d.f. into this basis set as
/\1',+1,app i—1
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and the true scalar dissipation p.d.f. #(A) is reconstructed from the weights a, using
(A 7). The reconstruction proceeds from the lowest apparent thickness value, since any
given layer can only appear thicker in the measurement plane. Each narrow range of
layer thicknesses therefore only contributes to the distribution at greater thicknesses.
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